РАБОЧАЯ ПРОГРАММА ПО АЛГЕБРЕ ДЛЯ 7 – 9 КЛАССОВ

Планируемые результаты освоения программы

Программа обеспечивает достижение следующих результатов освоения образовательной программы основного общего образования:

личностные:

- сформированность ответственного отношения к учению, готовность и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору дальнейшего образования на базе ориентировки в мире профессий и профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учётом устойчивых познавательных интересов;
- сформированность целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;
- сформированность коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими, в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности;
- умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
- представление о математической науке как сфере человеческой деятельности, об этапах её развития, о её значимости для развития цивилизации;
- критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
- креативность мышления, инициатива, находчивость, активность при решении алгебраических задач;
- умение контролировать процесс и результат учебной математической деятельности;
- способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений.

метапредметные:

- первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;
- умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
- умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
- умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;
- умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;
- умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;

- понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
- умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
- умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.

предметные:

- умение работать с математическим текстом (структурирование, извлечение необходимой информации), точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику, использовать различные языки математики (словесный, символический, графический), обосновывать суждения, проводить классификацию, доказывать математические утверждения;
- владение базовым понятийным аппаратом: иметь представление о числе, владение символьным языком алгебры, знание элементарных функциональных зависимостей, формирование представлений о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;
- умение выполнять алгебраические преобразования рациональных выражений, применять их для решения учебных математических задач и задач, возникающих в смежных учебных предметах;
- умение пользоваться математическими формулами и самостоятельно составлять формулы зависимостей между величинами на основе обобщения частных случаев и эксперимента;
- умение решать линейные уравнения и неравенства, а также приводимые к ним уравнения, неравенства, системы; применять графические представления для решения и исследования уравнений, неравенств, систем; применять полученные умения для решения задач из математики, смежных предметов, практики;
- овладение системой функциональных понятий, функциональным языком и символикой, умение строить графики функций, описывать их свойства, использовать функционально-графические представления для описания и анализа математических задач и реальных зависимостей;
- овладение основными способами представления и анализа статистических данных;
- умение применять изученные понятия, результаты и методы при решении задач из различных разделов курса, в том числе задач, не сводящихся к непосредственному применению известных алгоритмов.

Содержание учебного предмета

<u> 7 класс</u>

1. Выражения и их преобразования. Уравнения.

Числовые выражения и выражения с переменными. Простейшие преобразования выражений. Уравнение с одним неизвестным и его корень, линейное уравнение. Решение задач методом уравнений.

Цель - систематизировать и обобщить сведения о преобразовании выражений и решении уравнений с одним неизвестным, полученные учащимися в курсе математики 5,6 классов.

Знать какие числа являются целыми, дробными, рациональными, положительными, отрицательными и др.; свойства действий над числами; знать и понимать термины «числовое выражение», «выражение с переменными», «значение выражения», тождество, «тождественные преобразования».

Уметь осуществлять в буквенных выражениях числовые подстановки и выполнять соответствующие вычисления; сравнивать значения буквенных выражений при заданных значениях входящих в них переменных; применять свойства действий над числами при нахождении значений числовых выражений.

Статистические характеристики.

Цель - понимать практический смысл статистических характеристик.

Знать простейшие статистические характеристики.

Уметь в несложных случаях находить эти характеристики для ряда числовых данных.

2. Функции

Функция, область определения функции, Способы задания функции. График функции $y=\kappa x+b$ и её график. Функция $y=\kappa x$ и её график.

Цель- познакомить учащихся с основными функциональными понятиями и с графиками функций $y=\kappa x+b$, $y=\kappa x$.

Знатьопределения функции, области определения функции, области значений, что такое аргумент, какая переменная называется зависимой, какая независимой; понимать, что функция - это математическая модель, позволяющая описывать и изучать разнообразные зависимости между реальными величинами, что конкретные типы функций (прямая и обратная пропорциональности, линейная) описывают большое разнообразие реальных зависимостей.

Уметьправильно употреблять функциональную терминологию (значение функции, аргумент, график функции, область определение, область значений), понимать ее в тексте, в речи учителя, в формулировке задач; находить значения функций, заданных формулой, таблицей, графиком; решать обратную задачу; строить графики линейной функции, прямой и обратной пропорциональности; интерпретировать в несложных случаях графики реальных зависимостей между величинами, отвечая на поставленные вопросы

3. Степень с натуральным показателем

Степень с натуральным показателем и её свойства. Одночлен. Функции $y=x^2$, $y=x^3$, и их графики.

Цель - выработать умение выполнять действия над степенями с натуральными показателями.

Знатьопределение степени, одночлена, многочлена; свойства степени с натуральным показателем, свойства функций $y=x^2$, $y=x^3$.

Уметь находить значения функций, заданных формулой, таблицей, графиком; решать обратную задачу; строить графики функций $y=x^2$, $y=x^3$; выполнять действия со степенями с натуральным показателем; преобразовывать выражения, содержащие степени с натуральным показателем; приводить одночлен к стандартному виду.

4. Многочлены

Многочлен. Сложение, вычитание и умножение многочленов. Разложение многочлена на множители.

Цель - выработать умение выполнять сложение, вычитание, умножение многочленов и разложение многочленов на множители.

Знать определение многочлена, понимать формулировку заданий: «упростить выражение», «разложить на множители».

Уметь приводить многочлен к стандартному виду, выполнять действия с одночленом и многочленом; выполнять разложение многочлена вынесением общего множителя за скобки; умножать многочлен на многочлен, раскладывать многочлен на множители способом группировки, доказывать тождества.

5. Формулы сокращённого умножения

Формулы $(a\pm b)=a^2\pm 2ab+b^2$, $(a-b)(a+b)=a^2-b^2$, $[\{a\pm b\}(a^2+ab+b^2)]$. Применение формул сокращённого умножения к разложению на множители.

Цель- выработать умение применять в несложных случаях формулы сокращённого умножения для преобразования целых выражений в многочлены и для разложения многочленов на множители.

Знатьформулы сокращенного умножения: квадратов суммы и разности двух выражений; различные способы разложения многочленов на множители.

Уметьчитать формулы сокращенного умножения, выполнять преобразование выражений применением формул сокращенного умножения: квадрата суммы и разности двух выражение, умножения разности двух выражений на их сумму; выполнять разложение разности квадратов двух выражений на множители; применять различные способы разложения многочленов на множители; преобразовывать целые выражения; применять преобразование целых выражений при решении задач.

6. Системы линейных уравнений

Система уравнений с двумя переменными. Решение систем двух линейных уравнений с двумя переменными. Решение задач методом составления систем уравнений. Цель- познакомить учащихся со способами решения систем линейных уравнений с двумя переменными, выработать умение решать системы уравнений и применять их при решении текстовых задач.

Знать, что такое линейное уравнение с двумя переменными, система уравнений, знать различные способы решения систем уравнений с двумя переменными: способ подстановки, способ сложения; понимать, что уравнение - это математический аппарат решения разнообразных задач из математики, смежных областей знаний, практики.

Уметьправильно употреблять термины: «уравнение с двумя переменными», «система»; понимать их в тексте, в речи учителя, понимать формулировку задачи «решить систему уравнений с двумя переменными»; строить некоторые графики уравнения с двумя переменными; решать системы уравнений с двумя переменными различными способами.

7. Повторение. Решение задач

Закрепление знаний, умений и навыков, полученных на уроках по данным темам (курс алгебры 7 класса).

Тематическое планирование с указанием количества часов, отводимых на освоение каждой темы 7 класс

Глава	Гема		Количество контр. работ
1.	Выражения, тождества, уравнения	23	2
2.	Функции	12	1

3.	Степень с натуральным показателем	12	1
4.	Многочлены	17	2
5.	Формулы сокращенного умножения	18	2
6.	Системы линейных уравнений	12	1
7.	Повторение	8	1
	Итого:	102	10

Содержание учебного предмета 8 класс

Глава 1. Рациональные дроби (23 часа)

Рациональная дробь. Основное свойство дроби, сокращение дробей. Тождественные преобразования рациональных выражений. Функция $y = \frac{\kappa}{x}$ и её график.

Цель: выработать умение выполнять тождественные преобразования рациональных выражений.

Так как действия с рациональными дробями существенным образом опираются на действия с многочленами, то в начале темы необходимо повторить с обучающимися преобразования целых выражений.

Главное место в данной теме занимают алгоритмы действий с дробями. Учащиеся должны понимать, что сумму, разность, произведение и частное дробей всегда можно представить в виде дроби. Приобретаемые в данной теме умения выполнять сложение, вычитание, умножение и деление дробей являются опорными в преобразованиях дробных выражений. Поэтому им следует уделить особое внимание. Нецелесообразно переходить к комбинированным заданиям на все действия с дробями прежде, чем будут усвоены основные алгоритмы. Задания на все действия с дробями не должны быть излишне громоздкими и трудоемкими.

При нахождении значений дробей даются задания на вычисления с помощью калькулятора. В данной теме расширяются сведения о статистических характеристиках. Вводится понятие среднего гармонического ряда положительных чисел.

Изучение темы завершается рассмотрением свойств графика функции $y = \frac{\kappa}{x}$.

Глава 2.Квадратные корни (20 часов)

Понятие об иррациональных числах. Общие сведения о действительных числах. Квадратный корень. Понятие о нахождении приближенного значения квадратного корня. Свойства квадратных корней. Преобразования выражений, содержащих квадратные корни. Функция $y = \sqrt{x}$, её свойства и график.

Цель: систематизировать сведения о рациональных числах и дать представление об иррациональных числах, расширив тем самым понятие о числе; выработать умение выполнять преобразования выражений, содержащих квадратные корни.

В данной теме учащиеся получают начальное представление о понятии действительного числа. С этой целью обобщаются известные обучающимся сведения о рациональных числах. Для введения понятия иррационального числа используется интуитивное представление о том, что каждый отрезок имеет длину и потому каждой точке координатной прямой соответствует некоторое число. Показывается, что существуют точки, не имеющие рациональных абсцисс.

При введении понятия корня полезно ознакомить обучающихся с нахождением корней с помощью калькулятора.

Основное внимание уделяется понятию арифметического квадратного корня и свойствам арифметических квадратных корней. Доказываются теоремы о корне из произведения и дроби, а также тождество $\sqrt{a^2} = |a|$, которые получают применение в преобразованиях выражений,

содержащих квадратные корни. Специальное внимание уделяется освобождению от иррациональности в знаменателе дроби в выражениях вида $\frac{a}{\sqrt{b}}$, $\frac{a}{\sqrt{b} \pm \sqrt{c}}$. Умение

преобразовывать выражения, содержащие корни, часто используется как в самом курсе алгебры, так и в курсах геометрии, алгебры и начал анализа.

Продолжается работа по развитию функциональных представлений обучающихся. Рассматриваются функция $y=\sqrt{x}$, её свойства и график. При изучении функции $y=\sqrt{x}$, показывается ее взаимосвязь с функцией $y=x^2$, где $x\geq 0$.

Глава 3. Квадратные уравнения (21 час)

Квадратное уравнение. Формула корней квадратного уравнения. Решение рациональных уравнений. Решение задач, приводящих к квадратным уравнениям и простейшим рациональным уравнениям.

Цель: выработать умения решать квадратные уравнения и простейшие рациональные уравнения и применять их к решению задач.

В начале темы приводятся примеры решения неполных квадратных уравнений. Этот материал систематизируется. Рассматриваются алгоритмы решения неполных квадратных уравнений различного вида.

Основное внимание следует уделить решению уравнений вида $ax^2 + bx + c = 0$, где, $a \neq 0$, с использованием формулы корней. В данной теме учащиеся знакомятся с формулами Виета, выражающими связь между корнями квадратного уравнения и его коэффициентами. Они используются в дальнейшем при доказательстве теоремы о разложении квадратного трехчлена на линейные множители.

Учащиеся овладевают способом решения дробных рациональных уравнений, который состоит в том, что решение таких уравнений сводится к решению соответствующих целых уравнений с последующим исключением посторонних корней.

Изучение данной темы позволяет существенно расширить аппарат уравнений, используемых для решения текстовых задач.

Глава 4. Неравенства (20 часов)

Числовые неравенства и их свойства. Почленное сложение и умножение числовых неравенств. Погрешность и точность приближения. Линейные неравенства с одной переменной и их системы.

Цель: ознакомить обучающихся с применением неравенств для оценки значений выражений, выработать умение решать линейные неравенства с одной переменной и их системы.

Свойства числовых неравенств составляют ту базу, на которой основано решение линейных неравенств с одной переменной. Теоремы о почленном сложении и умножении неравенств находят применение при выполнении простейших упражнений на оценку выражений по методу границ. Вводятся понятия абсолютной Погрешности и точности приближения, относительной погрешности.

Умения проводить дедуктивные рассуждения получают развитие, как при доказательствах указанных теорем, так и при выполнении упражнений на доказательства неравенств.

В связи с решением линейных неравенств с одной переменной дается понятие о числовых промежутках, вводятся соответствующие названия и обозначения. Рассмотрению систем неравенств с одной переменной предшествует ознакомление обучающихся с понятиями пересечения и объединения множеств.

При решении неравенств используются свойства равносильных неравенств, которые разъясняются на конкретных примерах. Особое внимание следует уделить отработке умения решать простейшие неравенства вида ах >b, ах <b, остановившись специально на случае, когда,а<0.

В этой теме рассматривается также решение систем двух линейных неравенств с одной переменной, в частности таких, которые записаны в виде двойных неравенств.

Глава 5. Степень с целым показателем. Элементы статистики(12 часов)

Степень с целым показателем и ее свойства. Стандартный вид числа. Начальные сведения об организации статистических исследований.

Цель: выработать умение применять свойства степени с целым показателем в вычислениях и преобразованиях, сформировать начальные представления о сборе и группировке статистических данных, их наглядной интерпретации.

В этой теме формулируются свойства степени с целым показателем. Метод доказательства этих свойств показывается на примере умножения степеней с одинаковыми основаниями. Дается понятие о записи числа в стандартном виде. Приводятся примеры использования такой записи в физике, технике и других областях знаний.

Учащиеся получают начальные представления об организации статистических исследований. Они знакомятся с понятиями генеральной и выборочной совокупности. Приводятся примеры представления статистических данных в виде таблиц частот и относительных частот. Обучающимся предлагаются задания на нахождение по таблице частот таких статистических характеристик, как среднее арифметическое, мода, размах. Рассматривается вопрос о наглядной интерпретации статистической информации. Известные обучающимся способы наглядного представления статистических данных с помощью столбчатых и круговых диаграмм расширяются за счет введения таких понятий, как полигон и гистограмма.

6.Повторение (6 часов)

Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс алгебры 8 класса.

Тематическое планирование с указанием количества часов, отводимых на освоение каждой темы 8 класс

Тема	Кол-во	Количество
	час.	контрольных работ
Рациональные дроби	23	3
Квадратные корни	20	2
Квадратные уравнения	21	2
Неравенства	20	1
Степень с целым показателем. Элементы статистики	12	1
Повторение	6	
ИТОГО		

Содержание учебного предмета 9 класс

1.Квадратичная функция, 24 ч

1) Функция. Возрастание и убывание функции. Квадратный трехчлен. Разложение квадратного трехчлена на множители. Решение задач путем выделения квадрата двучлена из квадратного трехчлена. Функция $y=ax^2+bx+c$, её свойства, график. Простейшие преобразования графиков функций. Решение неравенств второй степени с одной переменной. [Решение рациональных неравенств методом интервалов.]

Цель – выработать умение строить график квадратичной функции и применять графические представления для решения неравенств второй степени с одной переменной.

Знать основные свойства функций, уметь находить промежутки знакопостоянства, возрастания, убывания функций

Уметь находить область определения и область значений функции, читать график функции

Уметь решать квадратные уравнения, определять знаки корней

Уметь выполнять разложение квадратного трехчлена на множители

Уметь строить график функции y=ax² , выполнять простейшие преобразованияграфиков функций

Уметь строить график квадратичной функции $y=ax^2 + bx + c$, выполнять простейшие преобразования графиков функций, находить по графику нули функции, промежутки, где функция принимает положительные и отрицательные значения.

Уметь находить точки пересечения графика квадратичной функции с осями координат.

Уметь раскладывать квадратный трёхчлен на множители.

Уметь решать квадратное неравенство ах²+вх+с.≥0 алгебраическим способом. Уметь решать квадратное неравенство с помощью графика квадратичной функции

Уметь решать квадратное неравенство методом интервалов и на основе свойств квадратичной функции.

2) Четная и нечетная функции. Функция $y=x^n$, Определение корня n-й степени. **Цель** — ввести понятие корня n-й степени.

Знать определение и свойства четной и нечетной функций, определение корня n- й степени; при каких значениях а имеет смысл выражение $\sqrt[n]{a}$. Знать, что степень с основанием, равным 0 определяется только для положительного дробного показателя и знать, что степени с дробным показателем не зависят от способа записи r в виде дроби; свойства степеней с рациональным показателем.

Уметь строить график функции $y=x^n$, знать свойства степенной функции с натуральным показателем, уметь решать уравнения $x^n=a$ при: а) четных и б)нечетных значениях n. Выполнять простейшие преобразования и вычисления выражений, содержащих корни, применяя изученные свойства арифметического корня n-й степени. Уметь выполнять преобразования выражений, содержащих степени с дробным показателем.

- В начале темы систематизируются сведения о функциях. Повторяются основные понятия: функция, аргумент, область определения функции, график. Даются понятия о возрастании и убывании функции, промежутках знакопостоянства. Тем самым создается база для усвоения свойств квадратичной и степенной функций, а также для дальнейшего углубления функциональных представлений при изучении курса алгебры и начал анализа.
- Подготовительным шагом к изучению свойств квадратичной функции является также рассмотрение вопроса о квадратном трехчлене и его корнях, выделении квадрата двучлена из квадратного трехчлена, разложении квадратного трехчлена на множители.
- Изучение квадратичной функции начинается с рассмотрения функции $y=ax^2$, её свойств и особенностей графика, а также других частных видов квадратичной функции функции $y=ax^2+n$, $y=a(x-m)^2$. Эти сведения используются при изучении свойств квадратичной функции общего вида. Важно, чтобы обучающиеся поняли, что график функции $y=ax^2+bx+c$ может быть получен из графика функции $y=ax^2+bx+c$ помощью двух параллельных переносов. Приёмы построения графика функции $y=ax^2+bx+c$ отрабатываются на конкретных примерах. При этом особое

- внимание следует уделить формированию у обучающихся умения указывать координаты вершины параболы, ее ось симметрии, направление ветвей параболы.
- При изучении этой темы дальнейшее развитие получает умение находить по графику промежутки возрастания и убывания функции, а также промежутки, в которых функция сохраняет знак.
- Учащиеся знакомятся со свойствами степенной функции у=хⁿпри четном и нечетном натуральном показателе п.. Вводится понятие корня п-й степени. Обучающиеся должны понимать смысл записей вида ³√-27 , ⁴√81. Они получают представление о нахождении значений корня с помощью калькулятора, причем выработка соответствующих умений не требуется.

2.Уравнения и неравенства с одной переменной, 15 ч

Целое уравнение и его корни. Биквадратные уравнения. Дробные рациональные уравнения. Решение неравенств второй степени с одной переменной. Решение неравенств методом интервалов.

Цель – выработать умение решать простейшие уравнения заменой переменной и неравенства с одной переменной методом интервалов.

Знать методы решения уравнений

Уметь решать целые уравнения методом введения новой переменной и неравенства методом интервалов.

- В этой теме завершается изучение рациональных уравнений с одной переменной. В связи с этим проводится некоторое обобщение и углубление сведений об уравнениях. Вводятся понятия дробного рационального уравнения и его степени. Учащиеся знакомятся с решением уравнений третьей степени и четвертой степени с помощью разложения на множители и введения вспомогательной переменной. Метод решения уравнений путем введения вспомогательных переменных будет широко использоваться дальнейшем при решении тригонометрических, логарифмических и других видов уравнений.
- Расширяются сведения о решении дробных рациональных уравнений. Учащиеся знакомятся с некоторыми специальными приемами решения таких уравнений.
- Формирование умений решать неравенства вида $ax^2 + bx + c > 0$ или $ax^2 + bx + c < 0$, где $a \ne 0$, осуществляется с опорой на сведения о графике квадратичной функции (направление ветвей, ее расположение относительно оси Ox).
- Учащиеся знакомятся с методом интервалов, с помощью которого решаются несложные рациональные неравенства.

3.Уравнения и неравенства с двумя переменными и их системы, 16 ч.

Уравнение с двумя переменными и его график. Графический способ решения систем уравнений. Решение систем содержащих одно уравнение первой, а другое второй степени. Решение текстовых задач методом составления систем. Неравенства с двумя переменными. Системы неравенств с двумя переменными. Уравнение окружности. Решение систем двух уравнений второй степени с двумя переменными.

Цель – выработать умение решать простейшие системы, содержащие уравнения второй степени с двумя переменными, и решать текстовые задачи с помощью составления таких систем.

Знать методы решения уравнений:

- а) разложение на множители;
- б) введение новой переменной;
- в)графический способ.

Уметь решать целые уравнения методом введения новой переменной

Уметь решать системы 2 уравнений с 2 переменными графическим способом

Уметь решать уравнения с 2 переменными способом подстановки и сложения

Уметь решать задачи «на работу», «на движение» и другие составлением систем уравнений.

- В данной теме завершаемся изучение систем уравнений с двумя.переменными. Основное внимание уделяется системам, в которых одно из уравнений первой степени, а другое второй. Известный учащимся способ подстановки находит здесь дальнейшее применение и позволяет сводить решение таких систем к решению квадратного уравнения.
- Ознакомление обучающихся с примерами систем уравнений с двумя переменными, в которых оба уравнения второй степени, должно осуществляться с достаточной осторожностью и ограничиваться простейшими примерами.
- Привлечение известных обучающимся графиков позволяет привести примеры графического решения систем уравнений. С помощью графических представлений можно наглядно показать обучающимся, что системы двух уравнений с двумя переменными второй степени могут иметь одно, два, три, четыре решения или не иметь решений.
- Разработанный математический аппарат позволяет существенно расширить класс содержательных текстовых задач, решаемых с помощью систем уравнений.
- Изучение темы завершается введением понятия неравенства и системы неравенств с двумя переменными. Сведения о графиках уравнений с двумя переменными используется при иллюстрации множеств решений некоторых простейших неравенств с двумя переменными и их систем.

4. Прогрессии, 14 ч

Последовательности. Арифметическая и геометрическая прогрессии. Формулы n-го члена и суммы n первых членов прогрессии.

Цель – дать понятие об арифметической и геометрической прогрессиях как числовых последовательностях особого вида.

Добиться понимания терминов «член последовательности», «номер члена последовательности», «формула n –го члена арифметической прогрессии»

Знать формулу п –го члена арифметической прогрессии, свойства членов арифметической прогрессии, способы задания арифметической прогрессии

Уметь применять формулу суммы n –первых членов арифметической прогрессии при решении задач.

Знать, какая последовательность является геометрической, уметь выявлять, является ли последовательность геометрической, если да, то находить q

Уметь вычислять любой член геометрической прогрессии по формуле, знать свойства членов геометрической прогрессии

Уметь применять формулу при решении стандартных задач

Уметь применять формулу $S = \frac{e}{1-q}$ при решении практических задач

Уметь находить разность арифметической прогрессии

Уметь находить сумму п первых членов арифметической прогрессии. Уметь находить любой член геометрической прогрессии. Уметь находить сумму п первых членов геометрической прогрессии.

Уметь решать текстовые задачи.

- При изучении темы вводится понятие последовательности, разъясняется смысл термина «п-й член последовательности», вырабатывается умение использовать индексное обозначение. Эти сведения носят вспомогательный характер и используются для изучения арифметической и геометрической прогрессий.
- Работа с формулами n-го члена и суммы первых n членов прогрессий, помимо своего основного назначения, позволяет неоднократно возвращаться к вычислениям, тождественным преобразованиям, решению уравнений, неравенств, систем.
- Рассматриваются характеристические свойства арифметической и геометрической прогрессий, что позволяет расширить круг предлагаемых задач.

5. Элементы комбинаторики и теории вероятностей, 13 ч.

Примеры комбинаторных задач. Перестановки, размещения, сочетания. Относительная частота случайного события. Равновозможные события и их вероятность.

Цель: ознакомить учащихся с понятиями перестановки, размещения, сочетания и соответствующими формулами для подсчета их числа; ввести понятия относительной частоты и вероятности случайного события.

Знать формулы числа перестановок, размещений, сочетаний и уметь пользоваться ими.

Уметь пользоваться формулой комбинаторики при вычислении вероятностей.

- Изучение темы начинается с решения задач, в которых требуется составить те или иные комбинации элементов и. подсчитать их число. Разъясняется комбинаторное правило умножения, которое исполнятся в дальнейшем при выводе формул для подсчёта числа перестановок, размещений и сочетаний.
- При изучении данного материала необходимо обратить внимание обучающихся на различие понятий «размещение» и «сочетание», сформировать у них умение определять, о каком виде комбинаций идет речь в задаче.
- В данной теме учащиеся знакомятся с начальными сведениями из теории вероятностей. Вводятся понятия «случайное событие», «относительная частота», «вероятность случайного события». Рассматриваются статистический и классический подходы к определению вероятности случайного события. Важно обратить внимание обучающихся на то, что классическое определение вероятности можно применять только к таким моделям реальных событий, в которых все исходы являются равновозможными.

6. Повторение. Решение задач по курсу алгебры 7-9 кл, 9 ч

Тождественные преобразования алгебраических выражений. Решение уравнений. Решение систем уравнений. Решение текстовых задач. Решение неравенств и их систем. Прогрессии. Функции и их свойства (курс алгебры 9 класса).

Тематическое планирование с указанием количества часов, отводимых на освоение каждой темы

9 класс

№	Тема	Количество	Контрольных
		часов	работ
1	Повторение материала 7-8 класса	2	
2	Квадратичная функция	24	2
3	Уравнения и неравенства с одной переменной	15	1
4	Уравнения и неравенства с двумя переменными и	16	1
	их системы		
5	Прогрессии	14	2
6	Элементы комбинаторики и теории вероятностей	13	1
	Повторение. Решение задач по курсу алгебры 7-9	9	
	Контрольные работы по тексту администрации:	4	4
	-пробный ОГЭ		
	итоговая контрольная	1	1
	Итого	102	12